Discrete Sliding Mode Control Using Neural Network
نویسندگان
چکیده
منابع مشابه
Dynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks
Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...
متن کاملSliding Mode Control Using Neural Networks
Variable structure control with sliding mode, which is commonly known as sliding mode control (SMC), is a nonlinear control strategy that is well known for its robust characteristics (Utkin, 1977). The main feature of SMC is that it can switch the control law very fast to drive the system states from any initial state onto a user-specified sliding surface, and to maintain the states on the surf...
متن کاملDiscrete-Time Sliding-Mode Control Based on Neural Networks
In this paper, we present a new sliding mode controller for a class of unknown nonlinear discrete-time systems. We make the following two modifications: 1) The neural identifier which is used to estimate the unknown nonlinear system, applies new learning algorithms. The stability and non-zero properties are proved by dead-zone and projection technique. 2) We propose a new sliding surface and gi...
متن کاملRobust Sliding Mode Control for Nonlinear Discrete-Time Delayed Systems Based on Neural Network
This paper presents a robust sliding mode controller for a class of unknown nonlinear discretetime systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it...
متن کاملRobust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers
In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers
سال: 1997
ISSN: 0453-4654
DOI: 10.9746/sicetr1965.33.787